Math 55 Quiz 6 DIS 105

Name: \qquad 14 Mar 2022

1. A Californian license plate is made using one digit followed by three upper case English letters followed by another three digits, for example: 5FVP402 is a valid license plate.
(a) How many license plates that contain PIE can be made? [3 points]
(b) How many license plates that contain the digits 3 , 1 , and 4 can be made? [3 points]
(c) How many license plates whose digits add up to 15 can be made? [4 points]
(a) In this case the letters are fixed already, so just considering the digits, there are $10^{4}=1000$ possible license plates.
(b) Suppose the digits are 3, 1, 4, n.

If $n=1,3,4$, then there are $4 \cdot 3=12$ ways to arrange these digits (or $\frac{4!}{2!1!!!}=12$).
If $n \neq 1,3,4$, then there are $4 \cdot 3 \cdot 2=24$ (or $\frac{4!}{1!!!1!!}=24$).
So there are $3 \cdot 12+7 \cdot 24=204$ combinations for the digits. Together with the letters, there are $204 \cdot 26^{3}=3585204$ possible license plates.
(c) This is equivalent to asking how many solutions there are to $x_{1}+x_{2}+x_{3}+x_{4}=15$ with each x_{i} an integer in $[0,9]$.
There are $\binom{18}{3}=816$ solutions where each x_{i} is a nonnegative integer, but among these, there are $\binom{8}{3}=56$ solutions where $x_{1} \geq 10$ (since solutions of this type can be thought of as solutions of $\left(x_{1}-10\right)+x_{2}+x_{3}+x_{4}=5$ where $x_{1}-10, x_{2}, x_{3}, x_{4}$ are nonnegative integers. Similarly, there are 56 solutions where $x_{2} \geq 10,56$ solutions where $x_{3} \geq 10$, and 56 solutions where $x_{4} \geq 10$. All of these do not overlap, so there are $816-4 \cdot 56=592$ combinations for the digits.
Together with the letters, there are $592 \cdot 26^{3}=10404992$ possible license plates.

